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1- ReLU is significantly more inference-friendly that other
activation functions

RelLU activations are very sparse, which can be used for faster
Inference.

2- Most of the modern LLMs are trained without RelLU.
Thus non-sparse activation and more costly inference.

3- Non-RelLU activations do not improve the performance
significantly. However, they lead to non-sparse activations
leading to much more costly inference.

ReLU & Activation Sparsity
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LLMs & Activation Functions

ReLU is rarely being used in SoTA LLMs
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RelLU leads to significantly higher activation sparsity.

Sparse MatVec on M2-Macbook:

The Impact of the Activation Function

When trained from scratch, the choice of activation function has a negligible impact on performance
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Training an OPT model from scratch with various activation functions
results in comparable performance across different functions.

Relufication: Replace/insert ReLU layers to LLMs that were pre-trained w/o RelLU

stage 1|Replaced with ReLU

an
%

[ Attention

]

l

[ Down Proj

J

I

RelLU

[

Up Proj

]

J

| RelLU

[

Normalization
A

stage 2| Inserted ReLU

Kept ReLU

Ve

/

Falcon Layer

<
A

| Down Proj |

» <&
» al

|
RelLU

Gate Proj

%

Up Proj

[ Normalization ]
|

<
A

| Attention |

| Normalization |

J

\

Llama Layer

Input Sparsity (%)

P

[ Down Proj ]

?
RelLU

f

Up Proj

[ Normalization] /

P

[ Attention |

l RelLU l

[ Normalization
A

OPT Layer

Model
QKV UpProj DownProj

OPT 6.7B 0 0 97 4.5 59.8
OPT 6.7B (relufied-s2) 50 40 97 2.8 58.6
Llama 7B 0 0 0 6.6 68.4
Llama 7B (relufied-s1) ‘ 0 0 62 ‘ 4.8 ‘ 67.1
Llama 7B (relufied-s2) 51 6/ 65 2.9 66.4
Falcon 7B 0 1 0 6.6 66.8
Falcon 7B (relufied-s1) 0 0 94 ‘ 4.1 ‘ 65.2
Falcon 7B (relufied-s2) 56 56 95 2.2 64.8
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Relufication: Additional Results
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Relufication, pre-activation distribution and activation sparsity

Definition: How much the neurons haven’'t been used for processing
the first t tokens?
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For the OPT-6.7B model, on average, about 50% of all the neurons will
be unused across the first 150 tokens of the prompt.
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Favorable accuracy-efficiency tradeoff of ReLU:
Generally, using ReLU has a minimal impact on performance, yet it can
significantly speed up token generation.

Call for more work on inference-aware architecture design

Inference costs generally outweigh training costs over the long term.
This factor should be considered more carefully in architecture design.
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