ReLU Strikes Back: Exploiting Activation Sparsity in Large Language Models

Iman Mirzadeh, Keivan Alizadeh, Sachin Mehta, Carlo C Del Mundo, Oncel Tuzel, Golnoosh Samei, Mohammad Rastegari, Mehrdad Farajtabar ICLR 2024 · Apple

TL;DR

1- ReLU is significantly more inference-friendly that other activation functions

ReLU activations are very sparse, which can be used for faster inference.

2- Most of the modern LLMs are trained without ReLU.

Thus non-sparse activation and more costly inference.

3- Non-ReLU activations do not improve the performance significantly. However, they lead to non-sparse activations leading to much more costly inference.

ReLU & Activation Sparsity

LLMs & Activation Functions

Relufication: Replace/insert ReLU layers to LLMs that were pre-trained w/o ReLU

Model	Input Sparsity (%)			FLOPS	Avg
	QKV	UpProj	DownProj	(G)	0-shot
OPT 6.7B	0	0	97	4.5	59.8
OPT 6.7B (relufied-s2)	50	40	97	2.8	58.6
Llama 7B	0	0	0	6.6	68.4
Llama 7B (relufied-s1)	0	0	62	4.8	67.1
Llama 7B (relufied-s2)	51	67	65	2.9	66.4
Falcon 7B	0	1	O	6.6	66.8
Falcon 7B (relufied-s1)	0	0	94	4.1	65.2
Falcon 7B (relufied-s2)	56	56	95	2.2	64.8

Relufication: Additional Results

Relufication, pre-activation distribution and activation sparsity

Aggregated Sparsity

Definition: How much the neurons haven't been used for processing the first t tokens?

For the OPT-6.7B model, on average, about <u>50%</u> of all the neurons will be <u>unused</u> across the first 150 tokens of the prompt.

Takeaway

Favorable accuracy-efficiency tradeoff of ReLU:

Generally, using ReLU has a minimal impact on performance, yet it can significantly speed up token generation.

Call for more work on inference-aware architecture design

inference costs generally outweigh training costs over the long term. This factor should be considered more carefully in architecture design.